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I N F L U E N C E  OF M E D I U M ' S  P E C L E T  N U M B E R S  

ON H E A T  E X C H A N G E  IN F I B E R  B U N D L E S  

V. I. Eliseev, Yu. P. Sovit UDC 536.25 

Molding of synthetic fibers is carried out in both gas (melt molding, dry molding) and liquid media 
(wet and mixed molding). The wide spread in the physical parameters of the media in which bundles of 
molded fibers move, makes the question of the influence of these parameters on the intensity of heat and mass 
exchange very important. 

For an isolated fiber, this problem can be solved numerically subject to the corresponding boundary 
conditions. Comprehensive analysis of the influence of the thermophysical parameters of the medium (the 
Prandtl number Pr) on the heat exchange of streamlined surfaces has been performed (see, for example, [1, 2]) 
by numerical and approximate methods within the framework of boundary-layer theory. As a result, some 
mechanisms and relations were established. Clear-cut formulation of the problem within the framework of the 
Navier-Stokes or boundary-layer models is possible only for bundles with specific geometrical arrangements of 
fibers. However, in the general case of movement of a molded bundle, there are no simple regular geometrical 
schemes for fiber arrangement. In this connection, a more general concept, namely, the model of filtration 
flow in a porous body, is used in such systems to describe transfer processes. This approach to numerical. 
modeling of heat exchange in molded bundles has been developed by the authors in a number of papers (in 
particular, in [3, 4], where the basic equations and boundary conditions are formulated and the results of 
numerical analysis of particular variants are given). 

An important feature of the filtration flow model is the uncertainty of the quantities of the dynamic 
and heat- and mass-exchange interactions of the flow with a fiber (an element of the dispersed medium). 
The method of cells [5, 6] is widely used in the mechanics of heterogeneous media to determine analytically 
these parameters. Using this method, a specific problem is solved in a region around the element subject to 
the boundary conditions on the inner surface motivated by physical considerations. Conditions on the outer 
boundary of the cell are specified by authors in accordance with their as~arr ptions. For closure of ','m dynamic 
and heat-exchange problem, Eliseev and Sovit [3, 4] proposed integral conditions that relate the interaction 
parameters to the local filtration parameters of flow. 

In this paper, conditions of validity for the previous relations are determined, an approximate 
computation method is presented, and heat-exchange parameters at various Peclet numbers Pe are found. 

1. Hea t  Exchange  in Cell. To find the heat flux on the surface of a moving fiber, we write a 
boundary-layer equation in the axisymmetric system of the x and r coordinates: 

Ou Ou dp 0 ( O u )  O(ru) O(rv) 
o--7 - +  =o, 

p q , ( u ~  z OT 0 (rOT (1.1) 
�9 

Here u and v are velocity-vector components that correspond to the x and r axes; p is the pressure; p is 
the density; T is the temperature; cp is the specific heat, u is the kinematic viscosity; and )~ is the heat 

Dnepropetrovsk State University, Dnepropetrovsk 320625, Ukraine. Translated from Prikladnaya 
Mekhanika i Tekhnicheskaya Fizika, Vol. 37, No. 4, pp. 119-125, July-August, 1996. Original article submitted 
December 7, 1994; revision submitted May 31, 1995. 

0021-8944/96/3704-0559 $15.00 Q 1997 Plenum Publishing Corporation 559 



conductivity. The boundary conditions on the surface of the fiber 

u(rn) = U., T ( r . )  = T.  (1.2) 

(Ua and Tn are the velocity and temperature of the fiber) and the integral conditions 
r A  r A  

= rn)Ura, 2 ,  r u T  dr = ~rr2AufTf = ~r(r2A -- r~)UmTra (1.3) 
T n  It'll 

are the closure conditions for this system. Here ra is the radius of the fiber; r a is the outside radius of the 
cell; uf is the filtration velocity of the medium, Tf is the filtration temperature of the medium; Um is the mean 
velocity of the gas over the cell; and Tm is the mean calorimetric temperature. 

Axisymmetric boundary-layer equations (1.1) used as a basis for consideration of heat exchange are 
two-dimensional and do not have exact analytical solutions for arbitrary Un and Tn. Therefore, it is necessary 
to find approximate solutions or reduce (1.1) to one-dimensional differential equations consistent with the 
complete problem of heat exchange of a moving fiber bundle. An iterative method was used in [3, 4] to 
obtain simple analytical expressions, and the solution of the reduced equations of system (1.1) with discarded 
left-hand sides was used as a zeroth approximation: 

' <" [ ' ( , x - , : ) ]  ,,,(,-/,-.) 
u = Ua + 7 ~ ' ~  (r2 - r2) + Uh -- U. 4 #ldx InCrA/rn)' 

(1.4) 
T = :In + (TA - T,~) lnCrlr,) 

ln ( ra l rn) '  

where Ua and Tz~ are found from relations (1.3). 
The iterative method is rather simple and gives analytical expressions for a number of problems, and," 

therefore, it is useful for obtaining approximate solutions and estimates. It has found application in boundary- 
layer theory ([7] is one of the first works) and can be successfully used for constant thermophysical parameters 
(the advantages and disadvantages of the method are discussed in [8, 9]). In our case, this method makes it 
possible to obtain a system of shape parameters similar to those used in the multiparameter method of [10] 
and, hence, to reveal the degree of nonequilibrium of the flow. According to the multiparameter method, the 
flow and heat exchange in the boundary layer are characterized by an infinite system of shape parameters, 
which generally determine the degree of nonequilibrium of the flow; therefore, the smaller the magnitude of 
these parameters, the closer the process to a stabilized process. 

Expressions (1.4) are, strictly speaking, solutions of stabilized flow. They take into account 
parametrically variations of Un and T., Urn, and Tm along the z axis, but do not take into account the 
influence of the longitudinal velocity and temperature gradients which cause nonequilibrium in flows. The 
next approximation can compensate for this shortcoming. However, the solutions found by the authors of this 
paper have shown that their use is not effective, because the accuracy is not high at Pe >> 1 and the analytical 
expressions are rather cumbersome. In view of this, we propose a method that allows one to obtain a simple 
analytical solution which combines zeroth and first approximations. Its idea is close to that in [11], where the 
derivative of temperature with respect to the longitudinal coordinate is replaced by a constant value. In our 
case, we substitute the mean values of Um(dTm/dx) for u(OT/Oz)  to obtain an analytical solution. Then, the 
solution of the equation 

:~ ~-~ ~-~r = pcpUm dz 

has the form 
dT~ 

= r / ~ a ;  ~.  = ~ , / r a ;  r = ln (~ /~ . ) ;  r = ln (1 /~ . ) ;  e e  = RePr;  R e  = raVm/~; and where ~ = x / r a ;  n 
Pr = pcpv/A. We obtain the heat flux on the surface of the fiber q. from (1.5) after determining TA from the 
second condition of (1,3). 
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TABLE 1 

Pe 

1 
-2  10 

100 
1 

0 10 
100 

1 
2 10 

100 

qT 

--24.85 
--25.62 
--27.06 
--44.87 
--50.57 
--61.25 

--192.8 
--234.9 
--313.8 

qp 

-24.77 
-25.14 
-25.38 
-44.31 
-47.05 
.-48.79 

-188.7 
-208.9 
-221.8 

TABLE 2 

Pe 

1 
-2  10 

100 
1 

2 10 
100 

qT 

--167.6 
--278.1 
--262.8 

--24.39 
--26.41 
--26.13 

qp 

-172.7 
-280.6 
-255.5 

-24.48 
-26.46 
-26.00 

To obtain the accuracy of the solution above, let us consider a model problem of heat exchange in an 
infinite ring channel with stabilized liquid flow with the velocity profile 

- n ,  ~ A= ( 1 - n  2)-2r (1 n,2). -', 
' ~, 

subject to zero conditions on the outer and inner walls. The boundary conditions for temperature are given 
by the simple expressions 

T(1) = O, T(n,)  = 1 + exp (w_~), (1.6). 

which make it possible to find an exact solution in a rather simple manner. It can be obtained numerically, if 
we assume that T = Tn + T=exp (ae~), where T,  = 1 - ~$-1~, and T ,  satisfies the following equation and the 
boundary conditions: 

T., T (1) 0. 

Comparison of the exact and approximate solutions given in Tables 1 (~e = 1) and 2 (ee = - 1 )  
shows that at Pe = 1 there is good agreement between values of qT = OT/On,=, .  (accurate solution) and 
qp = OT/On,=, .  (exact solution) for both ~e = 1 and ~e = -1 .  At Pe = 10, the agreement is also satisfactory, 
but  at Pe = 100 for ~e = 1, the difference becomes substantial. It should be noted, however, that in the model 
problem the longitudinal temperature gradients which are compared have a factor of exp ( -2 )  to exp (2), while 
in reality it is less than 0.01 in the area with the most intense cooling. This suggests that the approximate 
solution found can be used to calculate the heat exchange of fibers in moving bundles. 

2. S o m e  R e s u l t s  of  A n a l y t i c a l  and  N u m e r i c a l  Ana lyses .  Let us consider a number of simple 
problems of theoretical and practical significance. We assume that the bundle is thick enough, i.e., in 
accordance with the solutions of [12], the direct influence of the boundary conditions on the surface of the 
bundle is shielded, and the flow is considered hydrodynamically stabilized. In this case, it is assumed that the 
heat exchange in the central zone of the bundle occurs in infinite bundles, and, hence, the equation of heat 
exchange obtained in [3, 4] is simplified and written as 

dTf [a(T, - Tf) + -~- j ,  (2.1) ~Pe ~ = 2n, bPe dTf] 

where ~ is the bundle porosity; a -- (1 - n2)uf/(2n, Ua); and the second term in the brackets is due to the 
filtration-temperature gradient; 
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1 r ~ d p .  2 { , ( 1 - n ,  2) ( 1 r2dp ( 1 - n 2 , ) ) ;  
Ub = ~ #dx /'4 "4- Uni5 "+ r  Uc - ~ -- 1 + n* 2 .u f  - [In 4 #dx 

i 1 = 0.25[(1 - 2n2,)r - 0.25(1 - 3n2)(1 - n2,)]; i 2 = 0.5[r --0.5(1 -- n,2)]; 

i3 = 0.5[r 2 -- r + 0.5(1 -- n2,)]; i4 = 0.166[(1 -- n ,  6) -- 3n,2(1 -- n4,) -- 3n,4(1 -- n2,)]; i5 = 0.25(1 -- n2) 2. 

Let us consider three  cases: 1) the  fibers have a constant temperature ;  2) heat  exchange with constant 
heat  release f rom the fiber surface; and 3) mixed heat  exchange. 

In the first case, Eq. (2.1) can be rewri t ten as 

Pe(r - 2n,  b) d(Tf - Tn) = - 2 n , a ( T f  - Tn), 
df 

and then its solution contains the simple expression 

2n, a 
Tf - Tn = B e x p ( - x ~ ) ,  X = Pe(e - 2n,b) '  (2.2) 

from which it follows tha t  the Nusselt number  
n, OT r 

Nun = ~ - (2.3) 
Tf -- Tn Onn=n. e -- 2n,b 

does not depend on the Peclet  number  of the  medium. 
In the  second case of constant heat  release, we have the equations 

pc~uf ~ = 2n,qn, 

with the simple solutions 

T f =  2 n,qn ~, 
p%uf 

[a(Tn - Tf) + bPe dTf] qn = r-A --~-j = const 

rA 
Tf - Tn = - $---~ qn(r - 2n, b). 

(2.4) 

It follows from them that  Nun = cn,a/(e  - 2n,b) i.e., the Nusselt number  coincides with expression (2.3). 
In the third case, to Eq. (2.1) we add the equation of heat exchange for a fiber, which is written as 

dTn 
_ [a(Tn - Tf) + 

dTf ] 
Pen d~ An bPe --~-j, (2.5) 

where Pen = pn%nrnUn/)%; Pn is the material  density; Cpn is the specific heat  of the material; and )~n is the 
heat  conductivi ty in the  fiber. After simple transformations, (2.1) and (2.5) can be reduced to the equation 

- ( n , ( ~ - 2 n , b ) P e  ~ )  
Pe(e - 2bS,) d(Tf Tn) _ 2aS,(Tf - Tn) S, = n, + Pen + 2(~/~n)n,bPe -~n 

d~ 

Using solutions of the type of (2.2), we obtain Nu = cn,a/(r - 2S, b). This expression is similar in form to 
formula (2.3), but  contains Peclet numbers  for flow in the interfiber space and for a moving fiber. 

562 



T n, Tf  ,~ 

200" 

100. 

Tn . T t ,~ 

200. 

'6 0.4 0.8 1:2 1. x , m  

100. 

0 0 
! 

0'.4 0.8 1.2 1. x, m 

Fig. 3 Fig. 4 

Let us consider the question of how the Prandtl number of the medium affects the heat exchange of 
fiber bundles moving in a tube. Figures 1-4 give calculation results of the model problems for Pr = 0.5, 1, 
5, and 10, respectively. The following values were used in the calculations: radius of the tube Rt = 0.1 m, 
radius of the bundle Rb = 0.05 m, fiber radius rn = 0.125 �9 10 -3 m, fiber velocity Un = 0.3 m/sec, number 
of fibers N = 100, initial fiber temperature Tn0 = 290~ initial gas temperature Tf0 = 20~ temperature 
of the channel wall Tw = 20~ the changes in the value of Pr were due only to the heat conductivity of the 
medium. 

It follows from the figures that the heat-exchange intensity decreases with an increase in Pr, and, as 
a result, the fiber temperature T~ (solid curves) at large values of Pr decreases more slowly than that at low 
values of Pr. 

Another important distinction is that at small Pr the differences between the fiber temperatures at- 
the center s and on the surface of the bundle p, and also between the temperatures of the medium (dashed 
curves) at the same points are rather appreciable. It decreases with an increase in Pr and is only a few degrees 
at Pr = 10 (in Figs. 3 and 4, the curves of the fiber temperatures at the center and at the boundary of the 
bundle practically merge). 

Thus, for the given set of governing parameters, the smaller Pr, the less homogeneous the temperature 
fields of the medium and of the fiber bundle. The nonhomogeneity is associated with the influence of the wall 
whose temperature is considerably lower than the fiber temperature. As a result, at low values of Pr more 
intense heat transfer from the bundle occurs, which causes greater nonhomogeneity of the temperature field 
inside the bundle. Here it is interesting to note that the gas temperature in the peripheral regions of the 
bundle (Figs. 1 knd 2) becomes even higher than the fiber temperature. Due to this, as is seen from Fig. 1 
at Pr = 0.5, the fiber temperature on the surface of the bundle begins to rise again after intense cooling and 
after intersection of the curves of Tns and Tfs. 

In spite of these differences, the range of Nusselt-number variation is narrower than the wide range 
of Prandtl-number variation. Thus, at the ends of the range considered, Nu = 0.42 for Pr = 0.5 and 1, and 
Nu = 0.51 for Pr = 5 and 10. The variation of Nu numbers with the location of the fiber in the bundle is 
practically insignificant. 
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